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The evolution of small two-dimensional perturbations of boundary flow in the region preceding the laminar-turbulent transition 
zone is investigated using a four-deck asymptotic model. It is assumed that the main flow is a two-dimensional boundary layer 
flow distorted by a wave of finite amplitude that is periodic in time and with a longitudinal coordinate. The problem is reduced 
to investigating the solutions of a linearized Benjamin-Ono equation, which describes secondary perturbations of a periodic 
Benjamin wave. The explicit expressions obtained for the structure of the perturbations confirm the neutral stability of the main 
flow with respect to two-dimensional perturbations. An exact solution of the problem of the passage of a Tollmien-Schlichting 
wave through a region perturbed by a solitary Benjamin wave is constructed by analysing the stability of the periodic. �9 2005 
Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

According to the Landau-Hopf hypothesis [1], the laminar-turbulent transition in viscous flows 
represents a sequence of bifurcations, each of which is a consequence of the loss of stability of the 
intermediate state of the flow, corresponding to a certain periodic fluid motion. The transition of 
subharmonic and Klebanoff modes [2] is also developed precisely in accordance with this~scenario: 
initially the steady flow in the boundary layer loses stability with respect to the Tollmien-Schlichting 
mode, and then, on attaining pulsations of a certain threshold amplitude, a new destabilization of the 
resultant periodic motion occurs, and an increase in the secondary perturbations lead to rapid breakdown 
of the laminar flow. 

A detailed analysis of these processes is extremely complex, and hence for a theoretical investigation 
of the laminar-turbulent transition, direct numerical simulation is usually employed, namely, a calculation 
of the solution of a mixed boundary-value problem for the complete system of Navier-Stokes equations 
using finite difference methods. The results obtained must be treated in the same way as the results of 
an experimental investigation. 

In this connection asymptotic models, which approximately described unsteady fluid motions in the 
pretransition region (where the Reynolds number is fairly high), have acquired a special role. Their 
use enables one to simplify the system of equations considerably, while retaining a qualitatively correct 
description of the main characteristics of the wave motion in the transition region (the dispersion law, 
the non-linearity, etc.) 

We will consider subsonic two-dimensional laminar boundary layer flow of a viscous gas. We will 
introduce the following notation for the local values of the dimensional parameters of the flow: 8 ~ is 
the characteristic thickness of the boundary layer and u ~ is the flow velocity on its outer boundary. The 
Reynolds number R = u~176 ~ will be assumed to be infinitely large (v ~ is the characteristic value of the 
kinematic viscosity). After the primary loss of stability of the steady flow, the perturbation experiences 
parametric amplification along the path corresponding to the neighbourhood of the lower branch of 
the neutral curve; during evolution of the perturbation the point corresponding to the wave parameters 
is moved away from the lower branch, being displaced into the region of lower wavelengths and higher 
Reynolds numbers. In this region the characteristic wavelength ~,~ satisfies the inequality 

1 ,~ ~.~176 <~ R 1/4 
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(the right-hand boundary of the region considered corresponds to the neighbourhood of the lower branch 
of the neutral stability curve [3]), while the characteristic time scale x ~ of the unsteady perturbations is 
defined by the relation x~176 ~ = (~?/~o)2. 

It has been shown [4], that perturbations, characterized by such time and length scales, have a four- 
deck structure. In the principal approximation they are accompanied by local displacements of the 
velocityo 2 and density profiles in a direction normal to the surface by an amount of the order of 
A o = 6oI~. o. 

Using the scales x ~ cz ~ A ~ we will introduce dimensionless independent variables t (the time) and x 
(the streamwise coordinate), and also a dimensionless quantityA, characterizing the local displacement 
thickness, taken with the opposite sign. In the case of two-dimensional perturbations [4], the function 
A(t,  x) satisfies the Benjamin-Ono integrodifferential equation 

+ ~  2 
O A_~ + A ~ x = ~ f O 2 A ( t,~__.~ ) I O ~ d~ (1.1) 

first obtained in [5] when describing the non-linear evolution of internal waves in a stratified liquid of 
infinite depth. The improper integral on the right-hand side of this equation is understood in the sense 
of the principal value. 

In the case of small oscillations 

A = Eexp( ikx -  ir + c.c. + O(E 2) 

Eq. (1.1) gives the dispersion relation 

= klkl (1.2) 

which approximates quite well the dependence of the frequency co of the Tollmien-Schlichting wave 
on the wave number k, calculated from the classical theory of the stability of parallel flows for values 
of R corresponding to the onset of laminar-turbulent transition (see [6]). Moreover, an accurate periodic 
solution of non-linear equation (1.1) (the Benjamin wave [5]) perfectly describes the form of pulsations 
observed experimentally, introduced into the flow by a Tollmien-Schlichting wave of finite amplitude 
in the pretransition part of the boundary layer [7]. These facts justify the use of a four-deck asymptotic 
scheme [4, 8] to describe the non-linear processes in the laminar-turbulent transition zone. 

In this paper we investigate the structure of small two-dimensional perturbations, which propagate 
on a background of waves of finite amplitude [5]. The results of the investigation were briefly described 
previously in [9]. 

2. SECONDARY P E R T U R B A T I O N S  OF THE P E R I O D I C  WAVE 

We will first consider the problem of two-dimensional perturbations of a periodic Benjamin wave. 
We will seek a solution of Eq. (1.1) in the form of the expansion 

A = A o + eAl + O(e2) 

Equation (1.1) is invariant under the replacement x -  ct ---> x, A - c  ---> A.  In this connection, we will 
investigate the perturbed flow in a reference frame moving with the velocity of the fundamental wave. 
In this case the functionA0(x) satisfies the stationary analogue of Eq. (1.1) 

dA 0 l+? d2Ao/d~ 2 
A~ dx = n J ~-x d~ 

A 2re-periodic solution of this equation was constructed [5] 

A o = ~ b,,ei"x; bo = 3q2-21' b n = - 2 q  Inl (n~:O), O < q < l  (2.1) 
,, =._. 1 - q  
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Summation of series (2.1) gives another form of the solution 

Ao = l + q2 1-  qZ 1 - qZ - 2 (2.2) 
1 + q2 _ 2qcosx 

The functionAl(t, x) satisfies the linearized equation (1.1) 

3 A , ~ . x . l  da o 1 ~  d~ at + A~ + --~'x A1 = (2.3) 

which is uniform with respect to t, with coefficients that are 21t-periodic inx. We therefore seek secondary 
perturbations of the wave (2.2) in the class of functions 

§  

A l = ~ ( x ) e x p ( i 0 t x -  itoat) + c.c., ~ = ~ a,e i"x (2.4) 
n 

where ~ e [0, 1) is is a real parameter, and o3~ and qbu are the complex frequency and complex 
eigenfunction, to be determined. 

Substituting expression (2.1) and (2.4) into Eq. (2.3) we obtain a linear algebraic system for the Fourier 
coefficients of the perturbation 

-poo 

-~ E bn-lal = (a+n)la+nla,, 

We give the system the standard form of an eigenvalue problem 

+" [( 1+ q=)x ~.,In-tll (2.5) 
E Anlat=tOaan; An l=(a+n)  la+nl+l_qzj...,-.-,, J 

Here A,l is an infinite-dimensional matrix (--~ < n, l < + ~o) and 8nt is the Kronecker delta. 
At the initial stage of the investigation the solution of problem (2.5) was constructed using numerical 

methods. To do this the infinite-dimensional problem was approximated by a "truncated" finite- 
dimensional problem by replacing the infinite limits in the summation by finite limits (-N < n, I < N, 
N - 100); the solution of the latter was calculated using a standard subroutine from the IMSL library. 
An analysis of the results of the calculation enabled us to established the general form of the linearly 
independent solutions of problem (2.5) (we denote the number of the solution by the superscript 
m e  (--~, +oo)) 

a(m) (m)~+n In-ml 
. = c .  -ff-~--~m q (2.6) 

and enabled us to separate the set of solutions of problem (2.5) into two classes. 
The first class contains two solutions (we will give them the numbers m = 0, -1). All the Fourier 

coefficients of these solutions are non-zero, while the corresponding distributions of the values of the 
auxiliary coefficients C(n ~ C(n q) have the form of a "step" 

(o) {1,  n>_O 
Cn -- C (0), ? 1 < 0  

(-1) = Ic  (q), n > - I  
c, [1, n < - I  

The second class consists of an infinite set of solutions possessing the following property: the Fourier 
coefficients of the solutions with numbers m > 1 are equal to zero when n < m - 1, while the coefficients 
of solutions with numbers m _< -2  are equal to zero when n > m + 1. The representation of the Fourier 
coefficients in the form (2.6) considerably simplifies the problem of finding exact solutions of this class: 
a numerical solution shows that all but one non-zero auxiliary coefficients C(n m) are equal to one another 
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I::,: 
m > l : c n  = n = m - I ;  

[0,  n < m - 1  

0, n > m +  1 

(m) t m < - 2 : c  n = c (m), n = m + l 

[ 1 ,  n<_m 

By substituting Eqs (2.6) into Eqs (2.5) we can obtain explicit relations between the quantities C ( m ) ,  

o)~ m) and the parameters q and et 

c(m) l + ( o t - l + m ) ( 1 - q  2) .(=) ( a _ l + m ) 2 + l + q ~ ( o t  - = t% = l + m ) ,  m-> l  
(or - 1 + m)( 1 - q 2 )  2 ' 1 - q 

c(O) 1 . (o) 2 
= 2 ' too t  ----- Of, - -Of .  

1 -  (x(1-q  ) 

c(-O 1 _(-l) (or- 1)2- (Ct 1) = 2 ' too t  = - -  - -  
1 + (c t -  1 ) ( 1 - q  ) 

1 - ( c t +  I + m ) ( 1  _q2) ,  . (m) ((~+ 1 +m.2+)  1 2 C (m) 1 + m ) ,  m < _ - 2  
( ~ +  1 +m)(1 _q2)2 1 -q+ q2(~ + 

Hence, the fundamental periodic motion considered is neutrally stable with respect to two-dimensional 
secondary perturbations, since all the eigenfrequencies satisfy the equality Im 0)(a m) = 0. Summation 
of the corresponding Fourier series gives exact expressions for the eigenfunctions ~m), which we will 
omit for brevity. 

Note that the solutions constructed possess the property of symmetry (the bar denotes complex 
conjugation): 

�9 ( - m -  I )  . o(am)exp(iotx- i ~ m ) t )  = *~-~-l)exp[i(1 - 0t)x- tO l_a tl 

This property is a hidden property of the fact that the solution . , z l  1 correspond to each complex solution 
A1 of Eq. (2.3): the solution with number m < 0 is essentially the complex conjugate of the solution 
with number m' = -m - 1 _> 0, written in the form (2.4) (with parameter ct' = 1 - a, which satisfies the 
inequality 0 <_ a'  < 1). 

In the asymptotic model the flow region considered is not bounded in the longitudinal direction 
(-oo < x < +oo), and hence the discreteness of the spectrum has an artificial character and is generated 
by the above-mentioned limitation imposed on the parameter a. Really, the replacement ~ ~ a + 1 
in the solution with number m _> 1 converts it into the solution with number m + 1, where 

lim (~(m)eiax)  "'om(m+O lim _ (m) = ..(re+l) 
~ U%t tD 0 

ct--=) 1 - 0  (x--=) 1 - 0  

Hence it follows that modes with numbers m > 1 describe the same secondary perturbation with 
continuously varying wave number k = c~ + m > 1, with frequency 03 (+) and eigenfunction ~(+) 

A l = ~(+)(x)exp(ikx- ico(+)t) + c.c. (2.7) 

2 
(b(+) = k - ( k -  1 ) q e i X _ k - ( k  - 1)q 2 -i:, co (+) = ( k -  1)2+ 1 +q2(k - 1) 

k ( 1 - q e i X )  2 k(1-q2)2 qe  , | - q  

Correspondingly, the mode with number m = 0 is a secondary perturbation with wave number k = 
~ < 1  

A l = ~P(-)(x)exp(ikx- io(-)t) + c.c. 

~( - )  = k - ( k - 1 ) q e  i x_  k - l - k q e  -ix -ix o~ (-) = k 2 -  k 

k ( l  - qeiX) 2 k ( k  - 1 - kq2)(1 - qe-iX) 2qe ' 
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When q ~ 0 both types of perturbation acquire a sinusoidal form, and their dispersion relations in 
a fixed reference frame approach the form (1.2). When k ~ 1 and q is fixed the propagation velocities 
of the perturbations approach a single limit, equal to the velocity of the fundamental wave; nevertheless, 
the corresponding forms of the oscillations do not change into one another: 

lim (~(-)e ikx) = i dAo lim (~(+)e ikx) = 1( idA-~-~ OA~ 
k-~ l-O 2q dx ' k-, l +O 4\q dx "~q ) 

Examples of calculations of the form of the secondary perturbations of different characteristic 
wavelength are illustrated in Fig. 1. In the upper part we show the streamwise distribution of the 
displacement thickness, produced in the boundary layer by the fundamental wave when q = 0.3; the 
distributions of the complex amplitudes of the secondary perturbations of this wave for two values of 
the wave number k = 0.6 and 1.4 are shown in the middle and lower parts respectively. The real part 
of the complex amplitude (the continuous curve) describes the form of the perturbation at the initial 
instant of time, while the imaginary part (the dashed curve) is after the fourth period of the oscillations. 

3. I N T E R A C T I O N  OF A WAVE OF S M A L L  A M P L I T U D E  
W I T H  A S O L I T O N  

Using the results obtained we will construct a class of exact solutions of the linearized equation (2.3), 
describing two-dimensional secondary perturbations of a solitary Benjamin wave. To do this we will 
mention a simple property of the Benjamin-Ono equation: if the function A(t, x) is a solution of 
Eq. (1.1), the function aA(a2t, ax) will also satisfy it for an arbitrary a > 0. Hence, in addition to the 
solutions of Eq. (1.1) constructed in Section 2, there is also the solution 

1 fx~ 4e f t x)  
A = ~cAo~fc)-ir + 2)kal~k-2' Ic + O(e2) (3.1) 

where the functions Ao(x ) and Al(t, x) are specified by relations (2.2) and (2.7), while the amplitude 
parameter is defined by the quantity q = 1 - (v,k) -1, ~c > 0. 

In expansion (3.1) we will take the limit as k ~ ~ and change to a reference frame at rest with respect 
to the surface. As a result, Eq. (3.1) changes into the two-term expansion 

t ! A = Ao+EA l+O(• 2) 

which is a new solution of Eq. (1.1), written in the linear approximation. The first term in this expansion 
corresponds to the Benjamin soliton solution [5]; it describes a two-dimensional solitary wave of finite 
amplitude, propagating with a velocity ~c opposite to the flow 
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, 41r 
A~ = 1 + ~r 0 = x + r t  (3.2) 

The second-approximation function satisfies the linear equation (2.3) (the coefficients are 
calculated using equality (3.2)); it corresponds to a secondary perturbation of frequency to = 1 

A'  l = ~ ( O ) e x p (  i x -  i t )  + c.c., q~ = (1r ~:O-......~/ 
~r + 2 Jor + 0 2 

(3.3) 

The eigenfunction q)(0) satisfies the condition q)--) 1 as 0 ---> ___ oo, and hence, upstream and 
downstream of the fundamental wave the perturbation has the form of a Tollmien-Schlitchting wave 
of the same amplitude 

) 

A l - exp(ix - i t )  + c.c., x ---> +o~ (3.4) 

Hence, perturbation (3.3) describes the passage of a forward Tollmien-Schlichting wave of small 
amplitude with frequency to = 1 through a boundary layer, perturbed by a two-dimensional solitary 
wave of finite amplitude. The solution corresponding to the case when to r 1, can be obtained from 
formulae (3.2)-(3.4) by making the substitution 

e ! 

t --> tot, x --~ , f ~ x ,  A 0 --') A o l , f ~ ,  ~ "--) K I 4 ~  

Relation (3.4) shows that, in this model, the Tollmien-Schlichting wave, on passing through the soliton 
region, does not experience any resulting change of amplitude and phase. 

The process described is illustrated in Fig. 2 for the case when k = 1 and to = 1; in the upper part 
we show the form of the soliton and in the lower part we show the real and imaginary components of 
the complex amplitude of the secondary perturbation (3.3) (the continuous and dashed curves 
respectively). As an analysis shows, the amplitude of the secondary perturbation is an even function of 
the phase variable 0 and, for any n and to, it increases monotonically in the interval --oo < 0 < 0, reaching 
its greatest value at the centre of the soliton: 

l ( l ) (O)l  = 31r + 2 . , / ' ~  
~c + 2,,f~ 

In the  case of a short-wave perturbation (~-o -> ~r the wave experiences practically no amplification. 
The maximum gain is equal to 3 and occurs when the Tollmien-Schlichting wavelength is large compared 
with the characteristic longitudinal dimension of the soliton (~/-~ r ~). 

In conclusion we note that all the results obtained can also be applied to two-dimensional long-wave 
motions of a stratified liquid of considerable depth, since they are governed by the same equation (1.1). 
To describe the secondary instability it is obviously necessary to investigate the evolution of perturbations, 
modulated sinusoidally in a transverse direction, since, as is well known [2], the most rapidly increasing 
modes in the transition region have an essentially three-dimensional form. To investigate such perturbations 
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using the asymptotic model considered here it is necessary to use a system of equations [8], which, in 
the case of three-dimensional perturbations, requires numerical integration with respect to the vertical 
variable. 
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